
Electronic structure and electron-positron correlation effects in Mg

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 9927

(http://iopscience.iop.org/0953-8984/2/49/017)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 22:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/49
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 9927-9939. Printed in the UK 

Electronic structure and electron-positron correlation 
effects in Mg 

G Kontrym-Sznajd and J Majsnerowski 
W Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy 
of Sciences, S e 9 5 0  Wroclaw 2, PO Box 997, Poland 

Received 15 January 1990, in final form 18 June 1990 

Abstract. A reconstruction of 3D electron-positron densities from 2D ACPAR experimental 
spectra for Mg was performed using Cormack’s method and compared with theoretical 
results. In theoretical calculations the LMTO band structure method was applied. Many-body 
effects have been incorporated in a local density approximation both for valence and core 
electrons. 

These results lead to improved agreement between theory and experiment in comparison 
to the independent particle model. For the first time an over-enhancement of the higher 
momentum components was obtained both theoretically and experimentally. 

1. Introduction 

The measurement of the angular correlation of positron annihilation radiation (ACPAR) 
has proved to be a useful technique for studying the electronic structure of solids [l, 21. 
Using 2~ position-sensitive y-ray detectors yields 2D ACPAR spectra: 

r 

where p(p) is the electron-positron (e-p) momentum density. The function p(p) contains 
information about the Fermi surface (FS) and the nature of the positron and electron 
wavefunctions as well as about many-particle effects. 

The presence of the positron in a metal does not change the Fermi momentum [3] 
(as the positron is thermalized before annihilation [4]) but, unfortunately, deforms 
electronic wavefunctions (the electron density is enhanced at the positron position). 
This enhancement is described by the effective enhancement factor (EF) [5] defined as 
the ratio of the total density p ( p )  to the density calculated within the independent 
particle model (IPM): 

C(P) = P(P)/PIPM(P). (2) 
Here E(p) ,  which depends on the enhancements of various electronic states, is the only 
quantity that can be essentially extracted from the experiment as far as information 
about the e-p interaction is concerned. 

The purpose of this paper is to interpret 2D ACPAR experimental spectra for Mg [6]. 
For that the reconstruction of p ( p )  was performed by applying Cormack’s method [7] 
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as described in [8]. Theoretical densities were computed both within IPM and taking into 
account the e-p correlation in the local density approximation [9]. 

The experimental spectra for Mg were obtained by Walters and co-workers [6] 
on the UEA (University of East Anglia) 2D angular correlation spectrometer with a 
resolution of the order 0.7 mrad (1 mrad = 0.137 au). The measurement was performed 
for two crystal orientations: with direction of integrationp, (in equation 1) along [lOiO] 
(NrM)  and [1120] (NrK)  and at a temperature of 120 K. The total counts at peak were of 
the order 70 000. 

Mg is a simple HCP metal with two s electrons per atom. Although its electronic 
structure is known, information on the momentum dependence of the e-p density p ( p )  
and the EF is scarce. As far as we know, there is no information about the E(p) in Mg, 
both for the core electrons and the higher momentum components (HMC) of the valence 
electrons. 

On the basis of ACPAR data the authors of the papers [4,6,10,11] determined 
isotropic effective EFS for the valence electrons inside the FS in Mg. Shiotani and co- 
workers [ l l ]  also obtained core enhancement factors which they considered to be 
momentum independent as well as absolute values for the enhancement of the valence 
and core electrons determined from the total annihilation rates. Moreover, they 
observed the anisotropy at high momenta related to the anisotropic contribution of the 

In this paper we present the results obtained for the e-p density p ( p )  both inside the 
Fermi surface and in the region of higher momenta (core and HMC). The momentum 
dependent anisotropic EF E(p) for the valence electrons, Ev(p),  and the isotropic one for 
the core electrons, Ec(p), are determined. It follows from our theoretical results that the 
contribution from the third band in [lOiO] direction (obtained in IPM) is over-enhanced, 
i.e. .$(k + G )  > q ( k )  where k and G denote the momentum in the reduced zone scheme 
of the lth band and a reciprocal lattice vector, respectively. The densities p ( p )  recon- 
structed from the experimental data exhibit a similar effect. 

As far as FS dimensions obtained from the positron annihilation experiment are 
concerned, Kubica and Stewart [4] measured the ID ACPAR curve with good equipment 
resolution and obtained with high accuracy pF[OOO1] = 0.725 ? 0.001 au (where pF 
denotes the Fermi momentum). Shiotani and co-workers [ l l ]  observed a reduction of 
butterflies (FS elements in the third band around the L point of the Brillouin zone) giving 
their dimensions in the [OOOl] direction. On the basis of our results, which were obtained 
from the reconstruction of p ( p ) ,  we observed reductions in the size of the butterflies as 
well as the holes around the H point in the first and second Brillouin zones. 

The band structure of Mg, which is a starting point in our theoretical calculations, 
has been computed by Daniuk and co-workers [12]. 

HMC. 

2. Method 

2.1.  Theoretical calculations 

The LMTO method in the atomic sphere approximation was employed to calculate the 
band structure [12] and crystal wavefunctions for itinerant electrons (the details of 
the applied method are presented in [13-151). The band structure calculations were 
performed self-consistently using the exchange and correlation contribution to the 
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potential in non-spin-polarized form given by Hedin and co-workers [16]. The wave- 
functions were calculated semi-relativistically including all relativistic terms except the 
spin-orbit coupling. 

The positron wavefunction can be calculated in the same way using the Coulomb 
part of the electron potential with the opposite sign. However, taking into account the 
fact that the positron is thermalized, only the lowest state E+ at the r point (k = 0) is the 
state of interest. Since it has mainly 1 = 0 character, the positron wavefunction can be 
described (to a good approximation) by the radial solution R(E+, r )  of the Schrodinger 
equation for the energy E+. Thus, we used the positron wavefunction in the following 
form: 

Y + ( r )  = ( ~ x ) - ~ / ’ R ( E +  , r ) .  (3) 

The IPM e-p pair momentum distribution was calculated using the following formula: 

pIPM(p) = k .  n i jYk.f l (r)Y+(r)exp(- ip*r)dr (4) 

where vk5n(r )  denotes the electron wavefunction in the nth band. In calculations of 
momentum densities, overlap corrections due to the overlapping sphere geometry 
(especially very important for the Umklapp processes) [17] were applied. Many-body 
e-p correlation effects were incorporated in the local density approximation proposed 
by Daniuk and co-workers [9]. The e-p pair momentum density was obtained according 
to the following formula: 

p ( ~ >  = E 1 j m v k , n ( r ) y + ( r )  exp(-ip.r) d r  l 2  ( 5 )  
k . n  

where the function &(r) = & ( X f l k ( r ) ,  rs(r))  is the electron-gas EF & , ( p )  applied locally 
within the unit cell. The function 

X n k ( r )  = (Erik - V(r))/(EF - V(r>) 

represents the ratio of local kinetic energies. Enk is the electron energy, E F  the Fermi 
energy, V(r)  is the crystal potential and rs(r) is the local electron density parameter [9]. 

In the case of the core electrons the density function ~~,~, (p) ,  corresponding to the 
nlth core shell, was determined according to the following formula [ 181: 

2 

P c , n / ( P )  = (21 + 1) I j m ~ n d ~ ) ~ + ( ~ ) ~ d P ~ ) ~ 2  drl  (6) 

where &(r) is the radial electron wavefunction and j ,  is the spherical Bessel function. 
In both cases (i.e. in equations ( 5 )  and (6)) the EFS s r 3 ( p )  calculated within the Kahana 
formalism for an electron gas of various densities [19,20] have been applied. It should 
be noted here that there are also other treatments of the e-p interaction in an electron 
gas, proposed by Lowy and Jackson (L-J) [21] and Arponen and Pajanne (A-P) [22]. 
However, within L-J’s theory the momentum dependent EFS were calculated for r, 3 3 
only [23], i.e. for densities greater than the ones occurring in Mg. As far as A-P’s 
approach is concerned, the comparison of the theoretical EFS with experimental data 
shows that in simple metals (like Mg) the Kahana theory seems to be more adequate for 
describing the positron annihilation with valence electrons [20]. On the other hand, for 
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low r, (i.e. for r, < 2 which correspond to core densities) the values of the total annihil- 
ation rates calculated from Kahana and A-P theories are very similar [19]. Since these 
two theories give different EFS for valence electrons but very similar ones for core 
densities, we have chosen the EFS of Rubaszek and co-workers [19,20]. Moreover, in 
the case of core electrons the momentum dependence of EFS was neglected [18], i.e. the 
energy-independent enhancement function ~ ( r )  = ~ ( 0 ,  r,(r)) was used in equation (6). 

A similar approach was applied by Jarlborg and Singh [24] to determine the effective 
EF for d electrons in Ni. On the basis of the experimental results Singh and co-workers 
[25] found this enhancement to be a decreasing function of energy. The authors of [24] 
explained this fact theoretically, omitting the energy dependence of ~ ( r )  in ( 5 ) .  On the 
other hand, in the case of Ni the decrease with energy of the effective EF is also observed 
when the energy dependent EFS are applied in ( 5 ) ,  as shown by Daniuk [26]. However, 
this effect was much weaker within the approach of [26] and vanished in the case of other 
d transition metals (as e.g. for Cr). Of course, only a detailed comparison of theoretical 
and experimental results for various metals could verify the validity of the above treat- 
ments and the obtained results. 

2.2. Reconstruction method 

In order to reconstruct the e-p densities p(p)  from the experimental 2~ ACPAR data for 
Mg [6], we have applied the method proposed by Cormack [ 7 ] .  In this method a 3~ 
reconstruction is reduced to a set of ZD ones performed on the planes parallel to each 
other. In our case the reconstruction was performed on the planes perpendicular to the 
[OOOl] direction. The functions N ( p , ,  p y  = constant) and p ( p )  were expanded into the 
cosine Fourier series with the radial coefficients N,(t) and p,(p) ,  respectively (where, 
for the HCP structure, n = 0, 6, 12, etc [sa] and t = p J .  In the case of two projections, 
the isotropic ( N o )  and the first anisotropic (N6) component of the projections were 
computed according to the following equations: 

N"(t) = ( N r M  + NrK)/2 N6(t) = (NI.M - NTK)/2.  (7) 
The coefficients df and d r  of the expansion NO(t)  and N6(t)  into the series of the 
Chebyshev polynomials, respectively, were determined from the following equation 
[8c]: 

90 

N,(t)  = 2 C, 6:: sin[(2m + 1)ql  (8) 
m=O 

where t = cos q corresponds to the unit system where 0 S t S 1. Ninety values of NO(t)  
and N6(t) for t = cos(l0), cos(2'), . . ., cos(90") in equation (8) were used. Next, the 
density p(p) was calculated according to the following equation: 

mn 

p ( p ,  8 )  = (n  + 2m + l )aFRr(p)  cos(n8) (9) 
n=O.6  m=O 

where 

(10) ay  = ~ m + n / 2  
n .  

Equation (10) corresponds to the condition that the first n/2 coefficients d r  are equal 
to zero, i.e. the lowest term in the expansion of N,(t) into the Chebyshev polynomial 
series is sin[(n + l)V]. 
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It has been demonstrated in [8b, 8c] that in the case of the HCP structure Cormack's 
method allows reproduction of the anisotropy of p(p)  (particularly the differences 
prK(p) - PrM(p), as shown in (€4~1, p 237) even from two projections. The results shown 
here correspond to 2~ ACPAR spectra reduced to the first quarter by taking the arithmetic 
average of four data sets. We present the results without smoothing of p(p) ,  i.e. all 
coefficients U $  (mo = 89) and U? (m6 = 86) estimated from equation (8) for t = cos(l"), 
cos(2O), . . . , cos(90") were used in equation (9). 

3. Results 

3.1. Electron-positron pair momentum density 

The e-p momentum densities p ( p )  were reconstructed on the planes perpendicular to 
the [OOOl] direction and 0.367 mrad apart, which corresponds to the distance between 
the experimental points. Le tp  andp(Ip1 = (p2  + p;)'I2) denote the momentum on the 
plane py = pIoooll = constant and in the space, respectively. The densities p(p)  on the 
plane P ,  (first plane for py = 0.1835 mrad) and 011 P,  (p, = 1.6515 mrad) have been 
presented in [8b, 281. Since the greatest anisotropy of p(p)  forp > pF is observed on P I  
while for p S pF on P,, our theoretical calculations were restricted to these two planes. 

The agreement between theory and experiment is improved when the e-p interaction 
is included into the theoretical calculations. The application of the electron gas EF [ 19,201 
gives appropriate description of the momentum dependence of p(p)  forp s 0. 8pF (figure 
l(a)). Unfortunately, we are not able to compare the results for momenta close to pF 
because of the smearing of p ( p )  due to the equipment resolution. In order to do that it 
would be necessary to calculate p(p)  in the whole space, compute N(p,,p,) taking 
into account the equipment resolution and, finally, perform a reconstruction of the 
theoretical spectra. 

The results for p >pF  are presented in figure l(6), where both p ( p )  in the TK 
direction and the difference between densities in TM and TK are drawn. Along the TK 
direction, where the HMC contribution of the first band is negligible, p(p)  depends mainly 
on the core density. Comparison of the values of the theoretical densities (0.0075 and 
0.015 for IPM and correlated model, respectively) with those reconstructed from the 
experiment (0.016) shows that the EF for the core electrons is in accordance with the 
experiment. 

Comparison between theory and experiment shows that on the P ,  plane the ani- 
sotropy of p ( p )  is mainly due to the HMC contribution of the third band in the TM 
direction [8b, 28,301. Itsmaximumoccursforp = 6.6 mrad (figure l(b)).  Thisisingood 
agreement with the valuep = 6.75 mrad derived from experiment (a similar behaviour 
of p(p)  has been observed by Rozenfeld and Chabik [31]). As will be discussed in more 
detail in the next section, the application of the local density enhancement leads to an 
over-enhancement of the HMC in the TM direction. Quantitative comparison of the 
differences between PrM and PrK (figure l(6)) shows that this effect is stronger in the 
case of the experimental data. Taking into account that the experiment was carried out 
at 120 K, where the HMC contribution should be reduced [32,33], it seems that the 
reconstructed densities confirm the over-enhancement effect obtained theoretically. 

With respect to the behaviour of p(p)  on the P5 plane (figure 2), the difference A@F 
between the Fermi momentum in [1120] and [lOiO] directions obtained theoretically is 
equal to 0.06 mrad. This corresponds to the reduction both of the first zone holes around 



9932 G Kontrym-Sznajd and J Majsnerowski 

the H point in the TK direction (1.0.03 mrad) and the butterflies in the TM direction (= 
0.03 mrad) with respect to the free-electron FS. The anisotropy of the FS reproduced 
from 2~ ACPAR data seems to be much greater, giving AgF equal to 0.11 * 0.04 mrad. It 
can be attributed partially to the fact that for p < p F  the densities prM(p) < prK(p). 
Therefore, the influence of the experimental resolution function on the values of p(p) 
aroundpF can provide a somewhat greater displacement of p(p)  than what follows from 
the anisotropy of the FS. Nevertheless, the shape of the reconstructed densities suggests 
a greater reduction of the size of the butterflies in comparison with the band structure 
results. The densities p(p)  reconstructed on the succeeding planes Pi show the absence 
of butterflies on the planes P3 and PI1. They appear between P3 and P4 ( p ,  = 1.1 mrad) 
and vanish between Plo  and P I ,  ( p ,  = 3.67 mrad). This is in good agreement with 
both theoretical band structure calculations [12] ( p ,  = 1.056 mrad and 3.632 mrad, 
respectively) and results obtained by Ketterson and Stark [29] using the geometric 
resonance in the ultrasonic attenuation. 

The influence of the e-p interaction on the e-p pair density will be discussed in the 
next section. 

3.2. Electron-positron correlation effects in Mg  

Due to the e-p interaction, the electron density at the positron site is enhanced. This 
problem was investigated extensively (both theoretically and experimentally) for Val- 
ence electrons inside the central FS while only few papers were devoted to the enhance- 
ment of the HMC [5,18,34-411. For the core electrons little is known about the 
momentum dependence of Cc(p) (see [ 181 and references therein). For Mg, Shiotani and 
co-workers [ l l ]  determined a momentum independent i C ( p )  = 1.33, in agreement with 
the theoretical value obtained by Bonderup and co-workers [42]. However, based on 
the former results [ l l ]  and those from references [43,44], Sob suggested two values for 
yc of 2.24 and 1.24 for the low- and high-momentum region, respectively [45,46], where 
yc denotes the EF for the core annihilation rate. 

It has been shown in a paper [18] that the local density approach allows one to 
obtain not only the selective enhancement of various electronic states but also different 
enhancements within a given state. Due to a r,(r) dependence of ~ ( r )  (equation ( 5 )  or 
(6)), effective EFS for momenta k and k + C are different (i.e. e / ( k )  f BY(k + C)) as well 
as Bc(p) is strongly momentum dependent. In the case of valence electrons, HMC are 
enhanced stronger (over-enhanced) or weaker (de-enhanced) in comparison to a central 
FS. The other theoretical predictions [36-411 lead to the de-enhancement of the HMC 
contribution due to the interband transition. To our knowledge, no information about 
the HMC enhancement in Mg has been published until now. 

We applied the approach by Daniuk and co-workers [9] described in equations ( 5 )  
and (6) and obtained the anisotropic EFS for the HMC and the strongly momentum 
dependent EF of the core electrons. 

The momentum dependence of the effective EF for the valence electrons (E"(p) 
defined in equation (2)) is presented in figure 3. Inside the FS C'(p) is almost isotropic 
and has almost the same momentum dependence as E@), where the latter is calculated 
within the model of an electron gas for r, = 2.6 [20]. This is due to the fact that in each 
pointpthedensityp(p) = pi (p ) ,  i.e. thecontributionfromoneofthe bandsdominates(it 
is marked in figure 3 as first, second and third band). However, due to ther-dependence of 
~ ( r )  there are some differences in C(0) (see table 1). The parameter r, = 2.6 corresponds 
to the electron density obtained theoretically at the boundary of the Wigner-Seitz cell. 
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Figure 1. (a )  The isotropic component po(p)  of a density on the P, plane reconstructed 
from the experimental data (dotted curve). The theoretical density(prM(p) + prK(p))/2 is 
represented by the full curve. ( b )  The densities p ( p )  in the [1120] direction obtained 
theoretically and by reconstruction (full curve and dotted curve, respectively). Differences 
between densities in [ l O i O ]  and [11?0] directions are represented by the broken curve 
(theory) and the crosses (reconstructed densities). 

Figure2. The densitiesp(p) on the plane P5. Full and broken curves represent the theoretical 
densities in [1120] and [ l O i O ]  directions, respectively. The chain curves (--.-and - x -) 
show the corresponding densities obtained from the reconstruction of the 2D ACPAR data. 

The shape of &"(p) (up t o p  5 0 . 8 ~ ~ )  is in agreement with both the values extracted from 
the reconstructed densities and the ones found by Shiotani and co-workers [ll]. 

In order to study the influence of xnk(r) and r,(r) on the shape of .E"(p), various 
enhancement functions were applied in (5). Using ~ ( r )  as ~ ( 0 ,  r,(r)), & ( d w ,  r,(r))  
or &(U-, 2.6), the corresponding effective EFS are denoted as ( p ) ,  2L,l., ( p )  and 
E;(P), respectively (figure 4). The application of &(U-, r, = 2.6) is equivalent to 
the approach proposed by Sob [47] and Mijnarends and Singru [48]. In that case 
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first band second band ' 

2 4 K Q  6 M 8  10K p 

Figure 3. The momentum dependence of the 
effective enhancement factor Z'(p) for valence 
electrons of Mg in the [OOOl], [ 1 1 2 O ]  and [ l O i O ]  

4 M  lo PImrad) directionsdeterminedtheoretically. 

Figure 4. Effective enhancement factors for valence electrons in Mg in the [ l O i O ]  direction 
dependent on: ( a )  X,,(r) and rs(r) (full curve), E,, and rr(r) (dotted curve), rJr)  (-.-); 
( b )  the same as in (a)  but after normalization to unity. y ( p )  is represented by the curve 
(--. .-). 

Ei(k) = Ei(k f G )  and neither de-enhancement nor over-enhancement effects occur. If 
only the rs(r) dependence in ~ ( r )  is taken into account, is constant inside the FS and 
equals 4.884. It is necessary to emphasize here that in the case of valence electrons, ~ ( r )  
in equation (5) cannot only depend on the electron density. Such an approximation can 
be used in the case of positron annihilation with d or core electrons but not with valence 
ones, because in the former case e ; , (p )  is independent of momentum inside the FS (the 
same result was obtained for Na [18] and for Zn and Cd [49]). Therefore it is very 
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Table 1. The values of the enhancement factors for p = 0 (d(0)) and at the 
FS ( f ( p F ) / E ( 0 ) )  for valence electrons in Mg. and E"(p),  E; , (p) ,  & k ( p ) ,  d;,,,(P) denote 
free-electron gas EF for r, = 2.6 [20] and the effective EF obtained from equation ( 5 )  for 
44 = e(xnk(r).  rr(d) ,  44 = ~ ( 0 ,  ~ d r ) ) ,  44 = E(-, 2.6) and 44 = E(V-, 
rr(r)), respectively. 

0 4  

5.12 5,044 4.884 5.12 4.884 
EbF)/E(0) 1.54 1.51 1.01 1.54 1.55 

' I  

1 ;  
third h n d '  :second band ~ first band )MC , HMC; HMC I 

I I  
06 

Figure 5 .  The momentum dependence of the par- 
~ f i rs t  bond HMC ;first bard HMC tial enhancement factors E:(p)  for an ith band 

0 I 2 3 L M  5 7 8 r p h a d )  along the [OOOl] and [OlfiO] directions. 

important to take into account the momentum (or energy) dependence of ~ ( r )  in equation 

Inside the FS, EYs(p) is a constant, while it is strongly momentum dependent and 
anisotropic in a region of HMCS. Such an effect is not unexpected when one compares 
the shape of C;,(p) with a function y ( p )  = prPM(p)/p,(p), where pe denotes an electron 
density at the absence of the positron. If multiplication of Ynk(r )  by Y + ( r )  provides an 
anisotropic and momentum dependent y ( p )  function, the enhancement (which depends 
on the electron density at various lattice points) should provide similar effects (see also 
[18]). As a result the over-enhancement (E;(k + G )  > Cy(k)) or de-enhancement 
(Ey(k + G) < Ey(k)) can be obtained. It can be seenfrom figure 5 that in the TA direction 
the HMC contribution of the 3rd band forp < I2TA1 is strongly de-enhanced. However, 
in this region pIPM(p) = piPM(p) and this de-enhancement does not influence the shape 
of the effective EF E"(p) (compare figure 3 and figure 5 ) .  In the TM direction the HMC 
contribution from the 3rd band is over-enhanced (figure 5 ) .  Since in this region 
pIPM(p) = ~ \ ~ ~ ( p ) ,  we have E"(p) = &&I) (figure 3). Moreover, because the con- 
tribution of this band is relatively high, this over-enhancement (if it exists) should be 
observable by experiment. This effect is clearly visible from the reconstructed densities 
as discussed in the previous section. 

( 5 )  * 
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Figure 6 .  The momentum dependence of the theoretical effective enhancement factor EC(p) 
for core electrons in big (full curve). The broken and chain curves represent EFS for the 2p 
and 2s states, respectively. The dotted lines correspond to values of I' in the low- and high- 
momentum regions found in [46]. 

, _  - .- - 
. . . . . . . . . .  - 

0 2 r, 6 8 p i  mradl 

Figure 7. The theoretical effective enhancement factor E(p)  for the total density. Full and 
broken curves describe the EF in the TM and TK directions, respectively, when the e-p 
interaction was taken into account for both the valence and core electrons. The dotted and 
chain curves show the corresponding E(p) when the core contribution was calculated within 
the IPM. 

Figure 6 shows the theoretical EF of core electrons in Mg. The reason why oscillations 
of Ef(p)  appear in a region of higher momenta is discussed in [HI. The dependence of 
~ ' ( p )  is consistent with the behaviour of low- (2.24) and high-momentum (1.24) values 
of yc found in [46]. However, the EF yc following from our theoretical results is slightly 
higher and equals 2.44, although somewhat lower than A' = 2.59 obtained by Jensen 
[50],  The comparison of the theoretical densities with the reconstructed ones indicates 
that these surprisingly high values of F ( p )  (EC(p)  = 3.2 forp < 10 mrad) with respect to 
i'(0) = 5.044 are really observed in the experiment. 

The total theoretical effective EF (defined in equation (2)) along the TK and TM 
direction is presented in figure 7 for the cases when EC # 1 (as in figure 6) and for E' = 
1. Generally, the shape of i.(p) depends not only on i.' (or E T )  and .Ec but also on a 
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momentum dependence of pbpM(p) and pLpM(p). Such an effect is observed in the TM 
direction where the shape of pipM(p) influences the shape of Z(p) forp 3 6.6 mrad. This 
picture shows that it is impossible to extract information about the enhancement of the 
separate electronic states if only the two functions p ( p )  and pIPM(p) are known, the first 
determined from experiment and the second theoretically. 

4. Conclusions 

(i) The reconstruction of the 2D ACPAR experimental spectra in Mg [6] shows the 
anisotropy of the FS: the butterflies and fourth-zone electron pockets around L and holes 
around H are decreased. The dimension of butterflies along the [OOOl] direction is 
in agreement with the theoretical [12] and experimental [29] band structure results. 
However, their decrease along lines parallel to TM is about two times greater than in 
theory. 

(ii) The disagreement between the IPM theory and experiment was much reduced by 
introducing the e-p correlations in the local density approximation [9], 

(iii) The shape of the theoretical EF (E"(p)/E"(O)) inside the FS in Mg does not differ 
essentially from a free-electron gas EF for r, = 2.6 [20]. However, its value for p = 0 
(Z'(0)) depends on the effective electron density. So, the local density treatment is 
important in determining relative contributions to p(p)  from various electronic states 
as well as for the interpretation of the total annihilation rates. 

(iv) The local density equation ( 5 )  leads to an over-enhancement or de-enhancement 
of HMC. It seems that the reconstructed densities confirm the effect of the over-enhance- 
ment obtained theoretically for HMC of the third band in the TM direction. 

(v) The theoretical calculations provide evidence for a strongly momentum-depen- 
dent EF for core electrons in Mg. Comparison with the reconstructed densities in the TK 
direction (where the contribution of HMC is negligible) confirms the high values of EC(p) 
for momenta p < 10 mrad (3.2 in comparison with E'(p = 0) = 5.044 in the case of 
valence electrons). It is also in good agreement with the results for the total core 
annihilation rate [46,51]. 

(vi) The idea of introducing into the integral contained in the definition of p ( p )  
(equation ( 5 ) )  the EF depending on the local density and the local kinetic energy is due 
to Daniuk and co-workers [9]. Since then there were various attempts at modifying the 
position dependence of the EF by neglecting the dependence on the kinetic energy 
[18,24,52]. These attempts can lead, of course, to a limited success, especially, if the 
effective EF is not well described by the jellium results [53,54]. In the case of valence 
electrons the EF in ( 5 )  cannot depend only on the electron density. Such a treatment 
leads to a momentum-independent effective EF (Ev(p)) inside the FS. The momentum 
dependence of E"@) has been found beyond doubt in most metals, e.g. in Mg in the 
present work. 

Acknowledgments 

We are grateful to Dr P A Walters, Dr J Mayers and Professor R N West for providing 
the experimental 2~ ACPAR spectra for Mg and to Dr A Rubaszek, Dr M Sob and 
Professor H Stachowiak for helpful discussions. 



9938 G Kontrym-Sznujd and J Majsnerowski 

References 

[ 11 Brandt W and Dupasquier A (eds) 1983 Positron Solid-state (Amsterdam: North-Holland) 
[2] Hautojarvi P (ed) 1979 Positrons in Solids (Heidelberg: Springer) 
[3] Majumdar C K 1965 Phys. Reu. A 140 227 
[4] Kubica P and Stewart A T  1975 Phys. Reu. Lett. 34 852 
[SI Kontrym-Sznajd G and Sob M 1988J. Phys. F: Met. Phys. 18 1317 
[6] Walters P A,  Mayers J and West R N 1982 Positron Annihilation eds P G Coleman, S C Sharma and L M 

[7] Cormack A M 1964 J .  Appl .  Phys. 35 2908 
[8] (a) Kontrym-Sznajd G 1982 Positron Annihilation eds P G Coleman, S C Sharma and L M Diana 

Diana (Amsterdam: North-Holland) p 334 

(Amsterdam: North-Holland) p 346 
(b) -1989 Solidstate Commun.  70 1011 
(c) -1990 Phys. Status Solidi a 117 227 

[9] Daniuk S, Kontrym-Sznajd G,  Mayers J ,  Rubaszek A ,  Stachowiak H. Walters P A  and West R N 1985 
Positron Annihilation eds P C Jain, R M Singru and K P Gopinathan (Singapore: World Scientific) p 
254; 1987 J .  Phys. F: Mer. Phys. 17 1365 

[lo] Becker E H ,  Senicki E M D, Gould A G and Hogg B G 1972 Can. J. Phys. 50 2520 
[ l l ]  Shiotani N, Okada T ,  Sekizawa H and Wakoh S 1981 J. Phys. Soc. Japan 50 498 
[12] Daniuk S, Jarlborg T, Kontrym-Sznajd G ,  Majsnerowski J and Stachowiak H 1989 J .  Phys.: Condens. 

[13] Anderson 0 K 1975 Phys. Reo. B 12 3060 
[14] Jarlborg T and Arbman G 1976.7. Phys. F: Met. Phys. 6 189 
[15] Skriver H L 1984 The L M T O  Method (Heidelberg: Springer) 
[ 161 Hedin L, Lundqvist B I and Lundqvist S 1971 Solid Srate Commun. 9 537 
[ 171 Singh A K and Jarlborg T 1985 J. Phys. F: Met. Phys. 15 727 
[18] Daniuk S, Kontrym-Sznajd G ,  Majsnerowski J ,  Sob M and Stachowiak H 1989J. Phys.: Condens. Matter 

[19] Rubaszek A,  Stachowiak H,  Boronski E and Szotek Z 1984 Phys. Rev. B 30 2490 
[20] Rubaszek A and Stachowiak H 1984 Phys. Status Solidi b 124 159 
[21] Lowy D N and Jackson A D 1975 Phys. Reu. B 12 1689 
[22] Arponen J and Pajanne E 1979J. Phys. F: Met. Phys. 9 2359 
[23] Lowy D N 1982 Phys. Reu. B 26 60 
[24] Jarlborg T and Singh A K 1987 Phys. Reu. B 36 4660 
[25] Singh A K, Manuel A A,  Jarlborg T ,  Mathys Y ,  Walker E and Peter M 1986 Helu. Phys. Acta 59 410 
[26] Daniuk S 19891. Phys.: Condens. Matter 15561 
[27] Cormack A M 1973 Phys. Med. Biol. 18 195 
[28] Kontrym-Sznajd G and Majsnerowski J 1989 Solid Sture Commun. 70 593 
[29] Ketterson J B and Stark R W 1967 Phys. Reo. 156 748 
[30] Wakoh S 1981 J. Phys. Soc. Japan 50 490 
[31] Rozenfeld B and Chabik S 1977 Appl. Phys. 13 81 
(321 Brandt W, Eder L and Lundqvist S 1966 Phys. Reu. 142 165 
[33] Mijnarendes P E 1979 Positrons in Solids ed P Hautojarvi (Heidelberg: Springer) p 25 
[34] Oberli L,  Manuel A A ,  Sachot R, Descouts P and Peter M 1985 Phys. Reu. B 31 6104 
[35] Hede B B J and Carbotte J P 1972 J. Phys. Chem. Solids 33 727 
[36] Fujiwara K, Hyodo T and Ohyma J 1972 J .  Phys. Soc. Japan 33 1047 
[37] Sormann H,  Nowak P, Kindl P and Puff W 1982 Positron Annihilation eds P G Coleman, S C Sharma 

and L M Diana (Amsterdam: North-Holland) p 218 
[38] Sormann H and Puff W 1985 Positron Annihilation eds P C Jain, R M Singru and K P Gopinathan 

(Singapore: World Scientific) p 161 
[39] Sormann H 1987 Thesis (Habilitationsschrift) Technische Universitat, Graz 
1401 Sormann H 1987 Phys. Status Solidi b 142 K45 
[41] Sormann H 1989 Positron Annihilation eds L Dorikens-Vanpreat, M Dorikens and D Segers (Singapore: 

[42] Bonderup E, Anderson J U and Lowy D N 1979 Phys. Rev.  B 20 883 
[43] Maninen M, Nieminen R and Hautojarvi P 1975 Phys. Reu. B 12 4012 
[44] Kubica P and Stewart A T  1983 Can. J. Phys. 61 971 
[45] Sob M 1985 Solid State Commun.  53 249 

Matter 16321 

16321 

World Scientific) p 37 



Electron-positron correlation effects in Mg 9939 

[46] Sob M 1985 Solid State Commun. 53 255 
[47] Sob M 1978 Proc. 8th Ann. Int. Symp. on Electronic Structure ofMetals and Alloys ed P Ziesche (Dresden: 

[48] Mijnarends P E  and Singru R M 1979 Phys. Reu. B 19 6038 
[49] Kontrym-Sznajd G and Majsnerowski J (in preparation) 
[SO] Jensen K 0 1989 J .  Phys.: Condens. Matter. 1 10595 
[51] Johnson 0 1980 Phys. Status Solidi b 99 745 
[52] Rubaszek A 1989 J .  Phys.: Condens. Matter. 12141 
[53] Rubaszek A and Stachowiak H 1988 Phys. Reu. B 38 3846 
[54] Stachowiak H 1990 Phys. Reo. B 41 12522 

Technische Universitat) p 170; see also Sob M 1982 J .  Phys. F: Met. Phys. 12 571 


